Tensor Diagrams and Chebyshev Polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Chebyshev knot diagrams

A Chebyshev curve C(a, b, c, φ) has a parametrization of the form x(t) = Ta(t); y(t) = Tb(t); z(t) = Tc(t + φ), where a, b, c are integers, Tn(t) is the Chebyshev polynomial of degree n and φ ∈ R. When C(a, b, c, φ) is nonsingular, it defines a polynomial knot. We determine all possible knot diagrams when φ varies. Let a, b, c be integers, a is odd, (a, b) = 1, we show that one can list all pos...

متن کامل

Chebyshev Polynomials and Primality Tests

Algebraic properties of Chebyshev polynomials are presented. The complete factorization of Chebyshev polynomials of the rst kind (Tn(x)) and second kind (Un(x)) over the integers are linked directly to divisors of n and n + 1 respectively. For any odd integer n, it is shown that the polynomial Tn(x)=x is irreducible over the integers i n is prime. The result leads to a generalization of Fermat'...

متن کامل

Total Characters and Chebyshev Polynomials

The total character τ of a finite group G is defined as the sum of all the irreducible characters of G. K. W. Johnson asks when it is possible to express τ as a polynomial with integer coefficients in a single irreducible character. In this paper, we give a complete answer to Johnson’s question for all finite dihedral groups. In particular, we show that, when such a polynomial exists, it is uni...

متن کامل

Symmetrized Chebyshev Polynomials

We define a class of multivariate Laurent polynomials closely related to Chebyshev polynomials and prove the simple but somewhat surprising (in view of the fact that the signs of the coefficients of the Chebyshev polynomials themselves alternate) result that their coefficients are non-negative. As a corollary we find that Tn(c cos θ) and Un(c cos θ) are positive definite functions. We further s...

متن کامل

Restricted Permutations and Chebyshev Polynomials

We study generating functions for the number of permutations in Sn subject to two restrictions. One of the restrictions belongs to S3, while the other belongs to Sk. It turns out that in a large variety of cases the answer can be expressed via Chebyshev polynomials of the second kind.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2018

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rny199